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abstract 

One-year series of hourly average ozone observations, which were obtained from urban and 
national park air monitoring stations at Taipei (Taiwan), were analyzed by means of descriptive 
statistics and fractal methods to examine the scaling structures of ozone concentrations. It was 
found that all ozone measurements exhibited the characteristic right-skewed frequency distribution, 
cycle pattern, and long-term memory. A mono-fractal analysis was performed by transferring the 
ozone concentration time series (OCTS) into a useful compact form, namely, the box-dimension 
(DB)-threshold (Th) and critical scale (CS)-threshold (Th) plots. Scale invariance was found in these 
time series and the box dimension was shown to be a decreasing function of the threshold ozone 
level, implying the existence of multifractal characteristics. To test this hypothesis, the OCTS were 
transferred into the multifractal spectra, namely, the τ(q)-q plots. The analysis confirmed the 
existence of multifractal characteristics in the investigated OCTS. A simple two-scale Cantor set 
with unequal scales and weights was then used to fit the calculated τ(q)-q plots. This model fits 
remarkably well the entire spectrum of scaling exponents for the examined OCTS. Because the 
existence of chaos behavior in OCTS has been reported in literatures, the possibility of a chaotic 
multifractal approach for OCTS characterization was discussed. 
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1. Introduction 
As an indicator component for photochemical smog, ozone is responsible for various adverse 

effects on human being and foliage. Urban ozone is formed with a complex interaction of 
temperature, solar radiation, NOx, and VOC’s. In Taiwan, the change of ozone and other air 
pollutants concentration due to human action is measured by Taiwan Air Quality Monitoring 
Network (TAQMN). The Pollutant Standards Index (PSI) is used to inform the public about the 
current air quality in respect to its health effects. It is found that in Taipei, two major contributors 
for the high PSI values (poor air quality) are the O3 and PM10. Given the large number of 
inhabitants and the serious health effects that pollution has on their lives, significant efforts such as 
the control of nitrogen oxide and volatile organic compounds emissions have been directed to 
reduce the ozone concentrations. On the other hand, it is also important to develop effective 
warning strategies from the collected ozone data and weatherparameters to reduce impacts to public 
health during episodes or poor air quality. For this, it is extremely important to understand the 
dynamics characteristics of ozone from the data recorded at each air quality monitoring station with 
the aid of different statistical methods.  

Generally, the collected ozone data are often recorded as time series and are characterized by 
many large fluctuations with no obvious autocorrelation (see Figure 1). Moreover, the OCTS 
usually possess diurnal pattern because the antropogenic influences such as traffic emissions of NOx 
and VOC’s and meteorology have cycle patterns. In the literatures, many researchers have 



investigated the dynamics of ozone concentrations from OCTS with different aspects. Among them 

that interest us are the studies using recent advances in nonlinear dynamics and chaos theory to 
model and predict ozone concentration [1-4]. To obtain more confidence for these approaches, 
however, it is needed to enhance our fundamental knowledge on the complex structure of ozone 
history at each station. For this, our previous investigations [5-8] found that the fractal method 
might be an efficient tool for characterization, analysis, and comparison of the air pollutant 
concentration temporal characteristics.  

In this article, the long-range dependence of OCTS measured at Taipei was first examined with 
the standard time series analysis. Then, the clustering structure of the time series and its 
multiscaling characteristics would be analyzed by box-counting technique and multifractal scaling 
analysis (MSA), respectively. Finally, A simple two-scale Cantor set with unequal scales and 
weights was used to fit with the obtained multifractal spectra. Based on these results, the possibility 
of a chaotic multifractal approach for the characterization and prediction of temporal ozone 
concentration was discussed. 

 
2. Materials and methods 

2.1. Data 
At Taipei (Taiwan), the air pollutants concentrations were measured at seven monitoring sites 

of TAQMN. In this study, only six stations were examined because the ozone concentration was not 
measured at the traffic station. The selected sites are the urban stations, including the Shin-Lin, 
Chung-Shan, Wan-Hwa, Ku-Ting, Sung-Shan, and national park station, namely, the Yang-Min 
station. Our previous investigation [5] found that most examined air pollutant concentration time 
series in Taiwan exhibited obvious annual periodicity due to the systematic variations in response to 
seasonal and other factors and the statistical characteristics can be extracted from the data collected 
over one year. Accordingly, one-year series of hourly average values, from January 1998 to 
December 1998, was used in this study to examine the scaling characteristics of ozone 
concentration. It was noteworthy that although a year consists of 8760 hours, only about 8400 
readings were collected due to instrument calibration and maintenance. However, the missing 
observations seemed to be evenly distributed throughout the year. 

It is well known that the diurnal and seasonal variations play a significant role in the OCTS. 
Although they could have a large influence on the results of fractal analysis, however, we still prefer 
to use the original data to analyze the cluster structure of these time series. The reason is that any 
data preprocessing may strongly affect the results of fractal analysis and make the interpretation of 

T i m e  ( h o u r )
0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

PP
B

0

5 0

1 0 0

1 5 0

2 0 0

F i g u r e  1



the result complex. Moreover, the fractal analysis made below also indicates that the effect of 
diurnal and seasonal variations on the conclusions is insignificant.  
2.2. Standard statistical analysis 

For the above OCTS, we first evaluated some standard statistical parameters such as 
coefficient of variation and skewness. The long-range dependency of the time series was examined 
based on the autocorrelation spectra.  
2.3. Fractal analysis 

The scale invariance in the data set could be detected with the aid of fractal theory. For this 
approach, some methods have been proposed to estimate the dimension of the data set and the 
dimension may be interpreted as the degree of irregularity by which the set is distributed. When 
working with time series, one method is to transform the data into a set of points whose dimension 
is estimated by box counting [5,6] and other common method is to construct the phase space 
portrait of the process by using the correlation dimension. Recently, most of the studies have 
revealed the insufficiency of the above mentioned mono-fractal approaches to characterize the 
highly irregular time series. Methods suitable for analyzing the multiscaling properties in time 
series have been suggested, such as moment scaling analysis [5,7-10] and probability distribution 
multiple scaling. In this study, both the box counting technique and moment scaling analysis are 
adopted to examine the possible scaling characteristics in the OCTS.  

On box-counting method, the space of observation is divided into non-overlapping segments 
(boxes) of characteristic size L and the number of boxes N(L) needed to cover the data set is 
counted [6]. When applying this method to a time series, the boxes represent time intervals and the 
space of observation is equal to the total length of the series. To make the ozone concentration into 
countable items, another step is needed. In this study, we convert the values of the ozone 
concentration into sets of points (indicating value above threshold, Th) by using different Th levels. 
For this conversion, a zero Th means that all hours with a registered ozone concentration in the 
series are considered a point. If scale invariance exists in the data set, the expression N(L) = L−DB 
will hold, with DB as the box dimension. From the time series one can generate a plot of log[N(L)] 
vs. log(L) and the exponents DB can be obtained from the slope of a linear regression to the values 
obtained. 

Figure 2 shows one typical result of applying the box counting method, using different intensity 
thresholds, to Sung-Shan monitoring station. Some key features may be observed directly from this 
figure. The time scale L denotes a time interval within which ozone concentration exceedances 
occur and the number of boxes N(L) is an decreasing function of L. When Th is 0, a linear 
relationship over the whole scale spectra is observed and the slope is -1. With increasing Th, the 
curve is composed of two distinctly different sections; one with slope equals to –1 and the other 
with –DB. The value of L at the intersection of these two straight lines corresponds to the critical 
scale, CS. When time scale is greater than or equal to the critical scale, CS, the ozone concentration 
events exceeding the threshold Th must occur. On the other hand, the appearance of straight-lined 
sections with slope -DB in the log-log plots suggests the existence of scale invariance within the 
corresponding time scale range. This result indicates that the examined OCTS can be characterized 
by a box dimension DB or, in other words, display scale invariance within a specific time interval. 
This is not surprising since the presence of fluctuations at all time scales is in fact the origin of 
non-trivial scale invariance. 
 

 



The temporal structure of ozone concentration may depend on the threshold, Th; the higher Th 
the more scattered the pattern and the lower Th the more clustered the ozone events. Since the 
curves are further down and the slopes of the curves are larger (i.e., smaller DB) as Th increases, it is 
concluded that the higher the DB the denser the time structure and the lower the DB the sparser the 
time structure. Thus, the DB used here reveals the temporal scaling behavior of the ozone 
concentration point set and is a measure of how the ozone concentration clusters will fill the time 
axis it occupies. Corresponding to the relationship between DB and Th, we can also obtain CS as an 
increasing function of Th, i.e., a larger time scale is needed to capture an occurrence of higher 
intensity. Basically, the implication of DB-Th plots is equivalent to that of CS-Th plots, namely, at 
certain Th, a sparser (denser) time structure may be produced with larger (smaller) CS, and both 
contain all information about the ozone point-processes. Thus, with the aid of analysis of both 
DB-Th and CS-Th plots, some temporal characteristics in OCTS can be identified. 

However, it must be remarked that the above approach only gives us information about the 
global scaling properties of the ozone concentration history. It does not take into account temporal 
variations of the clustering degree because the local fluctuations of the distribution are not described 
by a single fractal dimension. Thus, the second method employed is the recently developed 
multifractal scaling analysis (MSA), i.e., the variability of the distribution at different scales is 
connected through a dimension function instead of one single dimension [9]. MSA may be used to 
investigate whether the probability distribution related to different intensity levels is characterized 
by a scaling behavior. In addition, it must be kept in mind that this approach is able to identify 
fluctuations existing in distributions but does not indicate where they occur. 

Since the detailed information about multifractal procedures can be found elsewhere [7,9-11], 
we only briefly state the essence of the multifractal formalism used in our analysis. First, the 

normalized concentration, Pini, for each hour is determined by ,
∑
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ozone concentration at time i. The series is then divided into nonoverlapping intervals of a certain 
time resolution, T. Each interval is characterized by a time resolution T, and the sum of normalized 
concentration in the interval, a probability mass function, Pj(T). Twelve time resolutions, from 21 to 
212 hour, are considered in this study. A partition function, Mq(T), of order q is calculated from the 
Pj(T) values as      
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where n is the total number of the intervals of size T, and q is a real number ranging from -∞ to ∞. 
For multifractally distributed measures, the partition function scales with the time resolution as  

,TM q
q

)(τ∝                                                      (2) 
where τ(q) is the mass exponent of order q. The mass exponent for each q-value can be obtained by 
plotting log Mq(T) vs. log T. The obtained τ(q) may be regarded as a characteristic function of the 
fractal behavior. If τ(q) versus q is a straight line (convex function) the data set is monofractal 
(multifractal).  

An alternative and equivalent way to study the scaling properties of OCTS is by considering 
their spectrum of singularities. We assume that in each interval, the mass probability function Pj(T) 
increases with the size T as Pj(T)∝ αT , then, the singularity exponent α is a scaling property 
peculiar to the interval. The index α therefore characterizes ‘singularities’ of different strengths and 
is called a local fractal dimension or a singularity index. It can be determined by Legendre 
transformation of the τ(q) curve as  

).()]([ qq
dq
d

α=τ                                                 (3) 

Now, corresponding to each α, one can identify a scaling exponent (or a fractal dimension) f(α) if 
one assumes that the number of intervals of size T with the same α, NT(α), is related to the T as 
NT(α) ∝T-f(α). Parameter f(α) can be calculated [10] as  

.fqqq )()()( α−α=τ                                               (4) 
   The shape and the extension of the f(α)-curve contains significant information about the 
distribution characteristics of the examined data set. Varying q is a trick for exploring the different 
regions of α. For large and positive q, we are looking for small values of α; i.e., parts of the 
measure in which the Pini values is high. For large and negative q, we study parts of the object for 
which the measure is very small and corresponds to the larger value of α. On the other hand, low 
values of f(α) characterize a rare occurrence of isolated peaks in a data sample, high values of f(α) a 
more frequent and dense appearance of data values. In general, the spectrum has a concave 
downward curvature, with a range of α-values increasing correspondingly to the increase in the 
heterogeneity of the distribution. For q = 0, we can deduce τ(0) = −D0, where D0 is the fractal 
dimension of the support of our measure and is equal to 1.0 because we are dealing with a 
one-dimensional data support (1-D time series). This turns out to be the maximum possible value of 
f. For a homogeneous distribution, the τ(q)-q curve becomes linear and then f = α = D0, i.e., D0 is 
also the fractal dimension of all the subsets. 
2.4. Multifractal cascade model  

A simple generalized Cantor set with two rescaling parameters (l1 and l2) and measure 
parameters (p1 and p2) was adopted to model the multifractal spectra of OCTS [7]. In this study, we 
assume l1 + l2 = 1 (because we are dealing with a one-dimensional data support) and p1 + p2 = 1, 
respectively. The two-scale Cantor set is constructed on an interval E of unit length, where E0 = E, 
En contains 2n subintervals obtained by dividing each subinterval of En-1 into two different length 
intervals. The positive measure µ on C is defined as follows. We start with the original region which 
has measure 1 and size 1 (i.e., E0 = 1 and µ0 = 1). Αt the second stage, the unit mass and size are 
split into p1 and p2 as well as l1 and l2, respectively. This defines µ1, which has p1 on one interval (l1) 
and p2 on the other interval (l2). Continue in this way, the mass on each interval of En will be 
divided randomly into the proportions p1 and p2 between its two subinterval in En+1. Accordingly, a 
sequence {µn} can be defined and it will converge weakly to a limiting mass distribution µ on C. 



Because for each 0 ≤ m ≤ n, a number ( )m
n  of the 2n intervals of En have mass p1

m(p2)n-m, it is 
apparent that the Pj(T) is generated by a multiplicative cascade with a binomial generator 
characterized by a probability p1.  

In this study, the Pj(T) is assumed to be generated by such an recursive process and its scaling 
is described by equation (2). To test the validity of the multiplicative cascade model on simulating 
the ozone concentration data set, both the τ(q) and f(α) functions are needed to determine. For this 
generalized two-scale Cantor set, the analytic expressions for both the τ-q and f-α curves have been 
obtained by Halsey et al. [11]: 
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For any given q, the τ, α, and f could be determined by eliminating 
m
n  with the aid of the 

following equation 
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Because the equations (5) to (7) are highly nonlinear, the effects of l1 and p1 on both f-α and τ-q 
curves can only be obtained by solving those equations numerically. Our previous investigation [7] 
found that larger p1 and smaller l1 might produce more obvious curvature at τ−q curve. Since higher 
non-linearity of the τ(q) curves is translated into a wider f(α) dispersion, then more pronounced 
multifractal characteristics, p1 and l1 may be used to compare the distribution’s heterogeneity in the 
examined OCTS.  
 

3. Results 
3.1. Standard statistical characteristics 

The standard statistical parameters estimated from the OCTS are shown in Table 1. For all 
examined stations, both the mean values and coefficients of variation are nearly equal (except 
Yang-Min), indicating that the spatial differences in ozone concentration at Taipei are rather small. 
On the other hand, the mean value of Yang-Min (national park station) is larger than that of other 
urban stations. One way to explain this result is that although urban stations may possess higher 
ozone concentration at some times due to the higher precursor concentration (NOx, and VOC’s), it 
may also have higher O3 dissipating rate owing to the higher concentrations of other air pollutants 
which may react with ozone. Accordingly, the mean values of ozone concentration at urban stations 
are lower than that of Yang-Min and the variation of ozone concentration at urban stations may be 
larger than that of Yang-Min, as indicated by the coefficients of variation in Table 1. Finally, 
because the coefficients of skewness of all examined stations are positive, the ozone distributions 
are all right-skewed. Moreover, the right-skewness degree of frequency distribution of the examined 



stations are also alike (except for Yang-Min and Shin-Lin).  
 

Table 1. Basic statistical properties and multifractal cascade model parameters of the examined  
OCTS.         

 Monitoring 
Station 

Mean 
(ppb) 

Coeff. 
of 

variatio
n 

Coeff. 
of 

skewne
ss 

p1 l1 Range of α 

Shin-Lin  18.4 0.84 0.91 0.510±0.001 0.385±0.001 0.751 
Chung-Shan 16.2 1.05 2.06 0.504±0.001 0.403±0.001 0.589 
Wan-Hwa 18.8 1.02 2.19 0.500±0.001 0.425±0.001 0.404 
Ku-Ting 16.7 1.01 2.26 0.501±0.001 0.413±0.001 0.499 

Sung-Shan 17.2 1.09 2.31 0.500±0.001 0.420±0.001 0.435 
Yang-Min 40.3 0.38 0.29 0.500±0.001 0.436±0.001 0.329 

 
The autocorrelation spectra given in Figure 3 indicate a clear diurnal pattern (except Yang-Min) 

due to the fact that both traffic emissions of NOx and VOC’s and meteorology have cycle patterns. 
For Yang-Min, the disappearance of cycle pattern reveals that the precursor pollutants (NOx, and 
VOC’s) for the ozone formation are insufficient and the ozone in Yang-Min is mainly contributed 
from the diffusion of ozone generated at surrounding areas (especially Taipei city). Moreover, the 
autocorrelation functions of all examined OCTS decrease slowly in a manner that is certainly 
different from an exponential decay. This slow decay in the autocorrelation function indicates a 

temporal persistence that may be related to self-similar properties in the time series.  
3.2. Box Dimension 

Figure 4 shows both DB-Th and CS-Th plot for all examined monitoring stations. As 
demonstrated in Figure 4(a), the plots could be roughly divided into two groups, Yang-Min and 
other urban stations. Under a certain Th value, the DB values of Yang-Min are larger than that of 
urban monitoring stations. Above a certain Th value, we get the opposite result to the former case. 
At low Th (0-0.5 mean), the low decrease of DB-Th plot of Yang-Min indicates that at low 

0 . 0

0 . 3

0 . 6

0 . 9

0 . 0

0 . 3

0 . 6

0 . 9

A
ut

oc
or

re
la

tio
n

0 . 0

0 . 3

0 . 6

0 . 9

0 . 0

0 . 3

0 . 6

0 . 9

0 . 0

0 . 3

0 . 6

0 . 9

T im e  L a g  ( h o u r )

S h in - L i n

C h u n g - S h a n

W a n - H w a

K u - T in g

S u n g - S h a n

1 1 0 1 0 0 1 0 0 0

0 . 0

0 . 3

0 . 6

0 . 9 Y a n g - M in

F ig u r e  3



concentration, its pattern is more discrete and the persistence of occurrence is less continuous than 

other urban monitoring stations. At high Th (>3 mean), Yang-Min still possess a less dense and 
continuous pattern due to possessing smaller DB and the fast decrease of DB-Th plots at intermediate 
Th (1-3 mean). Another way to say about this result is that during a longer (or shorter) period, the 
high (or low) concentration events occur more difficult for Yang-Min than for other urban 
monitoring stations (see Figure 4(b)). Therefore, it may be concluded that the data of Yang-Min are 
more concentrated on middle concentration regions but not on low and high range.  

It is apparent that both DB-Th and CS-Th plots are closely related to the concentration variation 
of ozone. Thus, it is interesting to discuss the correlation between DB-Th (CS-Th) plot and the 
coefficient of variation. As mentioned earlier, when the ozone data has larger DB at low Th and 
smaller DB at high Th, its distribution will concentrate on middle concentration regions but not low 
and high range. In this case, it will possess smaller temporal variation, namely, smaller coefficient 
of variation. Therefore, Yang-Min station may have smaller concentration variation when 
comparing with urban monitoring stations. This result is consistent with the coefficients of variation 
shown in Table 1. Although both DB-Th and CS-Th plots are closely related to the coefficient of 
variation, it is noteworthy that the former provides a much deeper insight into data structure than 
the latter because it can present a more microscopic picture about the distribution of data set. On the 
other hand, if we take closer look at the DB-Th plots and the corresponding coefficients of skewness 
in Table 1, some interesting correlations can also be found. Generally, the coefficient of skewness 
gives a measure of the relative skewness of a distribution. For distributions that have tails extending 
to the right, the coefficient of skewness is positive and the distribution is called right-skewed. For a 
right-skewed distribution with a single mode, the location of the mean is at the right side of the 
mode. Moreover, when the location of the mode moves more to the left, the larger is the coefficient 
of skewness. Accordingly, for a right-skewed distribution the DB-Th plot will show a sharp decrease 
when Th < 1 mean and the larger the decreasing rate of DB, the larger is the coefficient of skewness. 
As demonstrated in Figure 4(a), when Th < 1 mean, the DB-Th plots of all examined monitoring 
stations show pronounced decrease, indicating that the distributions of all examined OCTS are 
right-skewed. Moreover, the coefficient of skewness of Yang-Min station is the smallest among the 
examined monitoring stations (see Table 1), which is consistent with the slowest decreasing rate of 
DB at low threshold (Th < 1 mean) when comparing with other monitoring stations.  

The existence of close relationship between the DB-Th plots and the coefficients of variation 
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and skewness may provide some basis for the validity of box counting technique used in this study. 
This also indicates that the box counting is a useful approach to identify the temporal variation of 
ozone data. On the other hand, because scale invariance is closely related to the long-range 
dependence in the data set, it is not adequate to treat the ozone distribution as an independent 
stochastic process. This also indicates that the Poisson distribution, which assuming the occurrence 
of the event is completely random in a certain time interval, is not appropriate.  

Finally, the results of the mono-fractal analysis presented above show that a single dimension 
is insufficient to describe the scaling properties of the OCTS. It is found that the values of DB (or CS) 
decrease (or increase) as the Th magnitude increases, implying that different threshold intensities 
reveal different properties of the OCTS. Thus, a multifractal approach may be more suitable for 
describing the OCTS [5,7]. 
3.3. Multifractal scaling analysis 

Shown in Figure 5 are plots of the qth-order moment Mq vs. the time scale T in a log-log scale. 
All of these plots are mostly close to being straight for -10 ≤ q ≤ 10, signifying that the studied 
OCTS can be regarded as multifractal measures. The observation of multifractal scaling in OCTS is 
encouraging since multifractal formalism has been successfully applied to systems as complex as 
turbulence, and it may also have a great potential in modeling the complex structure of ozone. 
Before this can be done, however, a physical interpretation must be made concerning which ozone 
generating processes that can lead to such multifractal characteristics. When applying a multiscaling 
approach to temporal clustering of earthquakes, multifractal characteristics are interpreted in terms 
of diffusive processes of stress in the Earth’s crust. Moreover, multifractal characteristics in rainfall 
data have been explained with an assumption that a large-scale flux is successively broken into 
smaller and smaller cascades, each receiving an amount of the total flux specified by a 
multiplicative parameter. On the other hand, the multifractal characteristics in stock market are 
interpreted with the random multiplicative process of market information [10]. It is noteworthy that 
the stochastic processes proposed for above systems to generate multifractal characteristics are 
closely related to the heart of turbulence, namely, the multiplicative cascade process. The only 
difference is the characteristic physical quantity accompanying in the stochastic processes. For 
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earthquakes, rainfall, stock market, and turbulence, the corresponding characteristic quantity is 
stress, water, market information, and energy, respectively. Accordingly, the multifractal 
characteristics in OCTS may be interpreted with the aid of random multiplicative process of ozone 
concentration [5,7]. 
 

 
 
   Since multifractal characteristics indeed exist in all examined OCTS and can be viewed as a 
result of random multiplicative process, we next fit multifractal cascade model to these 
experimental τ(q) curves. The values of p1 and l1 can be estimated by comparing the experimental 
τ(q) curves with the curves computed from model for a range of values of p1 and l1. In Figure 6, we 
show a comparison between the measured τ(q) curve and equation (5) for all examined monitoring 
stations. The agreement is remarkable and the estimated p1 and l1 parameters are shown in Table 1. 
It is worth mentioning that if we use equal scales, i.e., l1 = l2 = 0.5, no choice of p1 would have been 
satisfactory. Since both p1 and l1 are determined, the corresponding f(α) curves can be obtained with 
the aid of equations (6) and (7). As demonstrated in Figure 7 and Table 1, the α range, then the 
multifractal characteristics (or the distribution’s heterogeneity), increases with the order: Yang-Min 
< Wan-Hwa < < Sung-Shan < Ku-Ting < Chung-Shan < Shin-Lin. As mentioned earlier, larger p1 
and smaller l1 may correspond to stronger multifractal characteristics. Accordingly, as shown in 
Table 1 and Figure 7, the multifractal property (or the distribution’s heterogeneity) of Yang-Min 
may be less obvious than that of urban stations. Moreover, it should be noteworthy that on 
multifractal analysis, α dispersion strength represents the range between the high and low ozone 
value, as well as the number of high and low concentration data are related to the left and right parts 
of the f(α) spectrum, respectively. Because the variations of data set is determined by both the data 
values and their corresponding number, the range of α itself is insufficient to determine the relative 
variability when comparing different data set. This is why the α  range of Shin-Lin is the largest but 
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its coefficient of variation is not the largest among the examined stations. This result also indicates 
that multifractal approach provides a much deeper insight into data structure than the coefficient of 
variation because it can provide a more microscopic picture about the distribution of data set. 

 
4. Discussion and Conclusions 

Some statistical methods have been used to investigate the clustering properties of OCTS in 
Taipei. The autocorrelation of all OCTS do not decay to zero exponentially but in a slower manner, 
indicating a temporal persistence in the examined OCTS. The scaling characteristics are first 
identified with the aid of box-counting technique. Multifractal analysis further indicates that the 
OCTS could be viewed as multifractal measures that may be the result of a random multiplicative 
process. A simple two-scale Cantor set with unequal scales and weights is then presented for the 
OCTS. This model fits remarkably well the entire spectrum of scaling exponents for the examined 
OCTS. The validity of fractal approach is supported with the existence of close relationship 
between the practical implications of DB-Th plots (l1 and p1) and the traditional statistical 
parameters.  

Although the fractal characteristics in OCTS are hardly reported in the literature and the 
studies conducted over the past several decades on air pollution have indicated no evidence of a 
deterministic behavior, it has been increasingly realized that the seemingly irregular-looking 
dynamic behavior of ozone could be the result of a simple deterministic system influenced by only a 
few nonlinear interdependent variables with sensitive dependence on initial conditions, i.e., chaos 
theory. The papers by Lee et al. [3], and Raga and Le Moyne [4] have shown possible presence of 
chaotic dynamics in hourly ozone concentration. Chen et al. [1] and Kocak et al. [2] have performed 
a nonparametric short-term prediction successfully by using the chaos theory. However, none of the 
past studies that investigated the existence of chaos in an OCTS attempted to investigate the 
existence of fractal behavior.  

The validity of fractal approaches shown in the present investigation and chaos characteristics 
in OCTS identified with other researchers may provide positive evidence regarding the coexistence 
of multifractal and chaotic hehaviors in the OCTS. This result is similar to the recent observation by 
Sivakumar [12] for rainfall process. He pointed out that multifractal approaches might provide 
positive evidence of a multifractal nature not only in stochastic processes but also in chaotic 
processes. A possible implication of this might be that OCTS characterization could be viewed from 
a new perspective: the chaotic multifractal perspective. It should be noted, however, that the 
methods and approaches employed in the present study possess some limitations. For instance, 
although the two-scale Cantor set can be regarded as a convenient model for ozone distribution in 
time, especially, if one is interested in modeling correctly the scaling properties of OCTS, it is 
difficult to conclude that the ozone distribution is governed exactly by a single two-scale Cantor set 
with p1 and l1 as parameters. Moreover, the studies to investigate the presence of both fractal and 
chaotic behaviors in the same OCTS are still needed. Therefore, the results obtained here should be 
substantiated further using chaos and other fractal identification methods to offer sound proof 
regarding the coexistence of fractal and chaotic nature in OCTS. Investigation in this direction is 
now in progress. 
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